课堂讲义

本文最后更新于 2024年7月9日 下午

这是我暑假给新高一的学弟学妹们上课的一些讲义,放在这里作为记录.

第五章 质心 刚体

5.1 质心

力的非线性疑难

刚体的运动,6个自由度

质心的定义:

rC=imirim,m=imi\bold{r}_C=\frac{\sum_i m_ir_i}{m}\,,\quad m=\sum_i m_i

质心运动定理:

vC=drCdt=imivimF合外=dpdt=maC\begin{aligned} \bold{v}_C&=\frac{d\bold{r}_C}{dt}=\frac{\sum_i m_i\bold{v}_i}{m}\\\\ \bold{F}_{合外}&=\frac{d\bold{p}}{dt}=m\bold{a}_C \end{aligned}

例1 部分和整体相似,设方程求解.

例2 略.

例3 刚体碰撞问题的三个方程

p0=pC+pp0d=pd+ICωev0=vCv\begin{aligned} \bold{p}_0&=\bold{p}_C+\bold{p}'\\\\ p_0d&=p'd+I_C\omega\\\\ e\bold{v_0}&=\bold{v}_C-\bold{v}' \end{aligned}

例4 略.

例5 非惯性系中质心的受力等价于质点的受力.

例6 同上.

例7 略.

例8 注意,简谐运动相差π/2\pi/2合成得到椭圆.

5.2 刚体定轴转动

转动惯量的引入:

Ek=i12mivi2=i12mi(ωRi)2=i12miRi2ω2=12Iω2\begin{aligned} E_k=\sum_i\frac{1}{2}m_iv_i^2&=\sum_i\frac{1}{2}m_i(\omega R_i)^2\\\\ &=\sum_i\frac{1}{2}m_iR_i^2\cdot\omega^2\\\\ &=\frac{1}{2}I\omega^2 \end{aligned}

L=iri×(mivi)Lz=Iω\begin{aligned} \bold{L}&=\sum_i\bold{r}_i\times(m_i\bold{v}_i)\\\\ L_z&=I\omega \end{aligned}

转动惯量的计算:

平行轴定理:IMN=IC+md2I_{MN}=I_C+md^2

垂直轴定理:Ix+Iy=IzI_x+I_y=I_z

正交轴定理:

Ix+Iy+Iz=2imi(xi2+yi2+zi2)=2imiri2=Ix+Iy+Iz\begin{aligned} I_x+I_y+I_z&=2\sum_im_i(x_i^2+y_i^2+z_i^2)=2\sum_im_ir_i^2\\\\ &=I_x'+I_y'+I_z' \end{aligned}

例9 略.

例10 量纲法.

例11 略.

M=IβM=I\beta.

例16 刚性模型的疑难.

5.3 刚体平面平行运动

瞬心:某一时刻,刚体上速度为零的点.

例17 重点理解两个圆互相纯滚时的速度关联. 放一个图在这里.

图1

注意:Δϕ=Δθ+Δϕ0\Delta\phi=\Delta\theta+\Delta\phi_0.

例24

M,M+iri×mi(aM)=IMβM,MrC×aMm=IMβaM=ω2(rC)+β×(rC)+dvCdtvM=ω×(rC)+vC=0vC=ω×rCdvCdt=dωdt×rC+ω×drCdt=β×rC+ω×drCdtaM=ω2rC+ω×drCdtm(rC×aM)=12dIMdtωM,M=IMβ+12ωdIMdt\begin{aligned} &\bold{M}_{外,M}+\sum_i\bold{r}_i\times m_i(-\bold{a}_M)=I_M\vec{\beta}\\\\ &\Longrightarrow\bold{M}_{外,M}-\bold{r}_C\times\bold{a}_Mm=I_M\vec{\beta}\\\\ &\bold{a}_M=\omega^2(-\bold{r}_C)+\vec{\beta}\times(-\bold{r}_C)+\frac{d\bold{v}_C}{dt}\\\\ &\bold{v}_M=\vec{\omega}\times(-\bold{r}_C)+\bold{v}_C=0\\\\ &\bold{v}_C=\vec{\omega}\times\bold{r}_C\\\\ &\frac{d\bold{v}_C}{dt}=\frac{d\vec{\omega}}{dt}\times\bold{r}_C+\vec{\omega}\times\frac{d\bold{r}_C}{dt}\\\\ &=\vec{\beta}\times\bold{r}_C+\vec{\omega}\times\frac{d\bold{r}_C}{dt}\\\\ &\bold{a}_M=-\omega^2\bold{r}_C+\vec{\omega}\times\frac{d\bold{r}_C}{dt}\\\\ &m(\bold{r}_C\times\bold{a}_M)=\frac{1}{2}\frac{dI_M}{dt}\vec{\omega}\\\\ &\Longrightarrow M_{外,M}=I_M\beta+\frac{1}{2}\omega\frac{dI_M}{dt} \end{aligned}

第七章 振动和波

7.1 简谐振动的运动学描述

x=Acos(ωt+ϕ)vx=ωAsin(ωt+ϕ)ax=ω2Acos(ωt+ϕ)\begin{aligned} x&=A\cos(\omega t+\phi)\\\\ v_x&=-\omega A\sin(\omega t+\phi)\\\\ a_x&=-\omega^2A\cos(\omega t +\phi) \end{aligned}

Euler公式:eiθ=cosθ+isinθe^{i\theta}=\cos\theta+i\sin\theta

Taylor展开:

f(x)=10!f(x0)+11!f(x0)(xx0)+12!f(x0)(xx0)2+=m=01m![f(m)(x0)](xx0)m\begin{aligned} f(x)&=\frac{1}{0!}f(x_0)+\frac{1}{1!}f'(x_0)(x-x_0)+\frac{1}{2!}f''(x_0)(x-x_0)^2+\cdots\\\\ &=\sum_{m=0}^{\infty}\frac{1}{m!}[f^{(m)}(x_0)](x-x_0)^m \end{aligned}

复数表述:A~=Aei(ωt+ϕ)\widetilde{A}=Ae^{i(\omega t +\phi)}

注意:一定不能做乘除法运算!yy方向的运动是虚拟的,只可以做线性运算.

例2 旋转坐标轴

xy=cosθsinθsinθcosθxy\left\lgroup\begin{array}{} x'\\ y' \end{array}\right\rgroup= \left\lgroup\begin{array}{} \cos\theta&\sin\theta\\-\sin\theta&\cos\theta \end{array}\right\rgroup \left\lgroup\begin{array}{} x\\ y \end{array}\right\rgroup

7.2 简谐振动的动力学性质

x¨=ω2x\ddot{x}=-\omega^2x

猜解:

1.x=Acos(ωt)+Bsin(ωt)2.x=Acos(ωt+ϕ)3.x=Aei(ωt+ϕ)\begin{aligned} 1.x&=A\cos(\omega t)+B\sin(\omega t)\\\\ 2.x&=A\cos(\omega t+\phi)\\\\ 3.x&=Ae^{i(\omega t+\phi)} \end{aligned}

振动能量:不能用复数表示,硬要用就是用复共轭.

总能量正比于振幅的平方.

能量导出动力学方程:

E=12mx˙2+12αx2+V0+βx=12mx˙2+12α(x+)20=mx˙x¨+α(x+)x˙0=mx¨+α(x+)ma=αx+\begin{aligned} &E=\frac{1}{2}m\dot{x}^2+\frac{1}{2}\alpha x^2+V_0+\beta x\\\\ &=\frac{1}{2}m\dot{x}^2+\frac{1}{2}\alpha(x+\cdots)^2\\\\ &\Longrightarrow 0=m\dot{x}\ddot{x}+\alpha(x+\cdots)\dot{x}\\\\ &\Longrightarrow 0=m\ddot{x}+\alpha(x+\cdots)\\\\ &ma=-\alpha x+\cdots \end{aligned}

7.3 保守系的振动

广义坐标ξ\xi,(xi),大写Ξ\Xi.

Fξ=dEpdξF_\xi=-\frac{dE_p}{d\xi}

平衡稳定性:稳定、不稳定、随遇.

T=2AAdξ2[EEp(ξ)]/αT=2\int_{-A_左}^{A_右}\frac{d\xi}{\sqrt{2[E-E_p(\xi)]/\alpha}}

Binet方程:

m(r¨rθ˙2)=F(r)m(2r˙θ˙+rθ¨)=02rr˙θ˙+r2θ¨=0d(r2θ˙)dt=0r2θ˙=Lmθ˙2=(Lmr2)2=L2m2r4r˙=drdt=drdθdθdt=θ˙drdθ=Lmr2drdθr¨=dr˙dt=ddt(Lmr2drdθ)=2Lmr3r˙drdθ+Lmr2d2rdθ2θ˙=2L2m2r5(drdθ)2+L2m2r4d2rdθ2\begin{aligned} &m(\ddot{r}-r\dot{\theta}^2)=F(r)\\\\ &m(2\dot{r}\dot{\theta}+r\ddot{\theta})=0\\\\ &\Longrightarrow 2r\dot{r}\dot{\theta}+r^2\ddot{\theta}=0\\\\ &\Longrightarrow\frac{d(r^2\dot{\theta})}{dt}=0\\\\ &\Longrightarrow r^2\dot{\theta}=\frac{L}{m}\\\\ &\dot{\theta}^2=(\frac{L}{mr^2})^2=\frac{L^2}{m^2r^4}\\\\ &\dot{r}=\frac{dr}{dt}=\frac{dr}{d\theta}\frac{d\theta}{dt}=\dot{\theta}\frac{dr}{d\theta}=\frac{L}{mr^2}\frac{dr}{d\theta}\\\\ &\ddot{r}=\frac{d\dot{r}}{dt}=\frac{d}{dt}(\frac{L}{mr^2}\frac{dr}{d\theta})=-\frac{2L}{mr^3}\dot{r}\frac{dr}{d\theta}+\frac{L}{mr^2}\frac{d^2r}{d\theta^2}\dot{\theta}\\\\ &=-\frac{2L^2}{m^2r^5}(\frac{dr}{d\theta})^2+\frac{L^2}{m^2r^4}\frac{d^2r}{d\theta^2} \end{aligned}

2L2mr5(drdθ)2+L2mr4d2rdθ2L2mr3=F(r)-\frac{2L^2}{mr^5}(\frac{dr}{d\theta})^2+\frac{L^2}{mr^4}\frac{d^2r}{d\theta^2}-\frac{L^2}{mr^3}=F(r)

引入u=1/ru=1/r

drdθ=ddθ(1u)=1u2dudθd2rdθ2=ddθ(drdθ)=ddθ(1u2dudθ)=2u3(dudθ)21u2d2udθ2\begin{aligned} &\frac{dr}{d\theta}=\frac{d}{d\theta}(\frac{1}{u})=-\frac{1}{u^2}\frac{du}{d\theta}\\\\ &\frac{d^2r}{d\theta^2}=\frac{d}{d\theta}(\frac{dr}{d\theta})=\frac{d}{d\theta}(-\frac{1}{u^2}\frac{du}{d\theta})=\frac{2}{u^3}(\frac{du}{d\theta})^2-\frac{1}{u^2}\frac{d^2u}{d\theta^2} \end{aligned}

2L2um(dudθ)2+2L2um(dudθ)2L2u2md2udθ2L2u3m=F(1u)L2u2m(d2udθ2+u)=F(1u)\begin{aligned} &-\frac{2L^2u}{m}(\frac{du}{d\theta})^2+\frac{2L^2u}{m}(\frac{du}{d\theta})^2-\frac{L^2u^2}{m}\frac{d^2u}{d\theta^2}-\frac{L^2u^3}{m}=F(\frac{1}{u})\\\\ &\frac{L^2u^2}{m}(\frac{d^2u}{d\theta^2}+u)=-F(\frac{1}{u}) \end{aligned}

推导天体运动的轨迹方程:

L2u2m(d2udθ2+u)=(GMmu2)L2m(d2udθ2+u)=GMmu=Acosθ+Bsinθ+C特解:u=GMm2L2u=Acosθ+Bsinθ+GMm2L2r=1Acosθ+GMm2L2r=L2GMm21+1+2EL2G2M2m3cosθ\begin{aligned} &\frac{L^2u^2}{m}(\frac{d^2u}{d\theta^2}+u)=-(-GMmu^2)\\\\ &\frac{L^2}{m}(\frac{d^2u}{d\theta^2}+u)=GMm\\\\ &u=A\cos\theta+B\sin\theta+C\\\\ &特解:u=\frac{GMm^2}{L^2}\\\\ &u=A\cos\theta+B\sin\theta+\frac{GMm^2}{L^2}\\\\ &r=\frac{1}{A\cos\theta+\frac{GMm^2}{L^2}}\\\\ &r=\frac{\frac{L^2}{GMm^2}}{1+\sqrt{1+\frac{2EL^2}{G^2M^2m^3}}\cos\theta} \end{aligned}

耦合摆:两个自由度,广义坐标取θ1\theta_1θ2\theta_2.

动力学方程:

θ1¨=(gl+km)θ1+kmθ2θ2¨=+kmθ1(gl+km)θ2\begin{aligned} &\ddot{\theta_1}=-(\frac{g}{l}+\frac{k}{m})\theta_1+\frac{k}{m}\theta_2\\\\ &\ddot{\theta_2}=+\frac{k}{m}\theta_1-(\frac{g}{l}+\frac{k}{m})\theta_2 \end{aligned}

求简正模的第一个方法:配凑简正模.

(ω2+gl+km)AkmB=0kmA+(ω2+gl+km)B=0ω2+gl+kmkmkmω2+gl+km=0\begin{aligned} &(-\omega^2+\frac{g}{l}+\frac{k}{m})A-\frac{k}{m}B=0\\\\ &-\frac{k}{m}A+(-\omega^2+\frac{g}{l}+\frac{k}{m})B=0\\\\ &\Longrightarrow\left\lvert\begin{array}{}-\omega^2+\frac{g}{l}+\frac{k}{m}&-\frac{k}{m}\\-\frac{k}{m}&-\omega^2+\frac{g}{l}+\frac{k}{m}\end{array}\right\rvert=0 \end{aligned}

算出来答案是一样的.

7.4 阻尼振动 受迫振动 自激振动

阻尼振动:

x¨+2βx˙+ω02x=0\ddot{x}+2\beta\dot{x}+\omega^2_0x=0

猜解:x=Aertx=Ae^{rt}.

代入方程,约去公因子得到:r2+2βr+ω02=0r^2+2\beta r+\omega^2_0=0.

解得:r=β±β2ω02r=-\beta\pm\sqrt{\beta^2-\omega^2_0},我们开始分类讨论:

1.过阻尼,β>ω0\beta>\omega_0r<0r<0

x=A1e(β+β2ω02)t+A2e(ββ2ω02)tx=A_1e^{(-\beta+\sqrt{\beta^2-\omega^2_0})t}+A_2e^{(-\beta-\sqrt{\beta^2-\omega^2_0})t},一定是衰减的.

2.临界阻尼,β=ω0\beta=\omega_0r=βr=-\beta

x=A1eβt+A2teβtx=A_1e^{-\beta t}+A_2te^{-\beta t},最快回到平衡位置.

3.低阻尼,β<ω0\beta<\omega_0,引入ω=ω02β2\omega=\sqrt{\omega^2_0-\beta^2}

r1,2=β±iωr_{1,2}=-\beta\pm i\omega

x=Aeβtcos(ωt+ϕ)x=Ae^{-\beta t}\cos(\omega t+\phi).

品质因数Q=2πE/ΔEQ=2\pi E/\Delta E,另一个计算公式Q=ω0/2βQ=\omega_0/2\beta,其中βω0\beta\ll\omega_0.

受迫振动:

x¨+2βx˙+ω02x=f0cosωt\ddot{x}+2\beta\dot{x}+\omega_0^2x=f_0\cos\omega t

x=A1eβtcos(ω02β2t+ϕ1)+A2cos(ωt+ϕ2)x=A_1e^{-\beta t}\cos(\sqrt{\omega_0^2-\beta^2}t+\phi_1)+A_2\cos(\omega t+\phi_2).

稳态解与暂态解的区别.

A2=f0(ω02ω2)2+4β2ω2,tanϕ2=2βω02ω2A_2=\frac{f_0}{\sqrt{(\omega^2_0-\omega^2)^2+4\beta^2\omega^2}}\,,\quad\tan\phi_2=-\frac{2\beta}{\omega^2_0-\omega^2}

共振位置ωr=ω022β2\omega_r=\sqrt{\omega^2_0-2\beta^2},共振峰宽度两个振幅为最大振幅的2/2\sqrt{2}/2处所对应的ω\omega之间的Δω\Delta\omega.

梁昆淼《理论力学》,周衍柏《理论力学教程》,刘川《理论力学》

自激振动:

恒力作用.

7.5 波的运动学描述

题外话:赵凯华《定性与半定量物理学》

ξ(x,t)=Acos(ωtkr+ϕ0)\xi(x,t)=A\cos(\omega t-\vec{k}\cdot\vec{r}+\phi_0)

没有能量损耗时,平面波振幅恒定不变,球面波振幅随rr反比,柱面波振幅随r\sqrt{r}反比.

干涉:两列同频率波相遇在同一点,对同一点的振动产生叠加作用.

ξ1=A1cos(ωt2πλr1+ϕ1)ξ2=A2cos(ωt2πλr2+ϕ2)ξP=ξ1+ξ2=Apcos(ωt+ϕ)AP=A12+A22+2A1A2cosΔϕPΔϕP=ϕ1ϕ2+2πλ(r2r1)\begin{aligned} &\xi_1=A_1\cos(\omega t-\frac{2\pi}{\lambda}r_1+\phi_1)\\\\ &\xi_2=A_2\cos(\omega t-\frac{2\pi}{\lambda}r_2+\phi_2)\\\\ &\xi_P=\xi_1+\xi_2=A_p\cos(\omega t+\phi)\\\\ &A_P=\sqrt{A_1^2+A_2^2+2A_1A_2\cos\Delta\phi_P}\\\\ &\Delta\phi_P=\phi_1-\phi_2+\frac{2\pi}{\lambda}(r_2-r_1) \end{aligned}

分析:ΔϕP=2kπ\Delta\phi_P=2k\pi时干涉相长,ΔϕP=(2k+1)π\Delta\phi_P=(2k+1)\pi时干涉相消.

LASER: Light Amplification by Stimulated Emission of Radiation

通过辐射的受激发射而产生的光放大

驻波:“停在一个地方不动的波”

ξ=2Acos(2πλ)xcosωt\xi=2A\cos(\frac{2\pi}{\lambda})x'\cdot\cos\omega t'

ξ\xi ε\varepsilon ϵ\epsilon

半波损:被固定住的地方是波节,反射波产生π\pi的相位差.

惠更斯原理:波阵面上的每一个点,都可以作为一个新的波源.

推导折射定律、反射定律.

Doppler Effect:(例28

ν=uvBcosϕBuvScosϕSν0\nu=\frac{u-v_B\cos\phi_B}{u-v_S\cos\phi_S}\nu_0

7.6 一维线性波动方程

形式:

2ξt2u22ξx2=0\frac{\partial^2\xi}{\partial t^2}-u^2\frac{\partial^2\xi}{\partial x^2}=0

1.弹性介质中的纵波和横波

杨氏模量(Thomas Young):E=F/Sdξ/dxE=\frac{F/S}{d\xi/dx}.

F=ESdξdxF=ES\frac{d\xi}{dx}F=ESΔxLF=ES\frac{\Delta x}{L},这就是Hooke定律,其中劲度系数k=ES/Lk=ES/L.

切变模量:G=T/Sdz/dxG=\frac{T/S}{dz/dx}.

类比杨氏模量,也可以写出切向的应力.

推导弹性介质中的波动方程:

kdx=ES/dxk_{dx}=ES/dx,为第nn个“小球”建立动力学方程,得到

(dm)d2ξndt2=kdx(ξn+1ξn)kdx(ξnξn1)2ξt2=kdxdm[(ξ(x+dx,t)ξ(x,t))(ξ(x,t)ξ(xdx,t))]2ξt2=kdxdm(ξxxdxξxxdxdx)2ξt2=kdxdm2ξx2(dx)22ξt2=Eρ2ξx2\begin{aligned} &(dm)\frac{d^2\xi_n}{dt^2}=k_{dx}(\xi_{n+1}-\xi_n)-k_{dx}(\xi_n-\xi_{n-1})\\\\ &\frac{\partial^2\xi}{\partial t^2}=\frac{k_{dx}}{dm}[(\xi(x+dx,t)-\xi(x,t))-(\xi(x,t)-\xi(x-dx,t))]\\\\ &\frac{\partial^2\xi}{\partial t^2}=\frac{k_{dx}}{dm}(\frac{\partial \xi}{\partial x}|_xdx-\frac{\partial\xi}{\partial x}|_{x-dx}dx)\\\\ &\frac{\partial^2\xi}{\partial t^2}=\frac{k_{dx}}{dm}\frac{\partial^2\xi}{\partial x^2}(dx)^2\\\\ &\frac{\partial^2\xi}{\partial t^2}=\frac{E}{\rho}\frac{\partial^2\xi}{\partial x^2} \end{aligned}

波速u=E/ρu_\parallel=\sqrt{E/\rho}.

横波可以类比,波速为u=G/ρu_\perp=\sqrt{G/\rho}.

2.弦上的横波

线密度为λ\lambda,张力TT.

(λdx)2ξt2=Tsin(θ+dθ)Tsinθ=T[tan(θ+dθ)tanθ]=T(ξxx+dxξxx)=T2ξx2dx2ξt2=Tλ2ξx2\begin{aligned} (\lambda dx)\frac{\partial^2\xi}{\partial t^2}&=T\sin(\theta+d\theta)-T\sin\theta\\\\ &=T[\tan(\theta+d\theta)-\tan\theta]\\\\ &=T(\frac{\partial\xi}{\partial x}|_{x+dx}-\frac{\partial\xi}{\partial x}|_x)=T\frac{\partial^2\xi}{\partial x^2}dx\\\\ \Longrightarrow\quad&\frac{\partial^2\xi}{\partial t^2}=\frac{T}{\lambda}\frac{\partial^2\xi}{\partial x^2} \end{aligned}

波速u=T/λu=\sqrt{T/\lambda}.

3.空气中的声波

等效杨氏模量:E=γp0E^*=\gamma p_0.

4.水面波

鸟人的水波题

群速和相速的公式:

群速vg=dωdkk0v_g=\frac{d\omega}{dk}|_{k_0},相速vp=ωkv_p=\frac{\omega}{k}.

波的反射和透射:

界面两侧,原函数相等,一阶导函数相等.

7.8 真空中的电磁波

2ξt2u2(2ξx2+2ξy2+2ξz2)=02ξt2=u22ξ\begin{aligned} &\frac{\partial^2\xi}{\partial t^2}-u^2(\frac{\partial^2\xi}{\partial x^2}+\frac{\partial^2\xi}{\partial y^2}+\frac{\partial^2\xi}{\partial z^2})=0\\\\ &\frac{\partial^2\xi}{\partial t^2}=u^2\nabla^2\xi \end{aligned}

E=0B=0×E=Bt×B=ε0μ0Et\begin{aligned} &\nabla\cdot\bold{E}=0\\\\ &\nabla\cdot\bold{B}=0\\\\ &\nabla\times\bold{E}=-\frac{\partial\bold{B}}{\partial t}\\\\ &\nabla\times\bold{B}=\varepsilon_0\mu_0\frac{\partial\bold{E}}{\partial t} \end{aligned}

×(×B)=ε0μ0t(×E)(B)2B=ε0μ02Bt22B=ε0μ02Bt2\begin{aligned} &\nabla\times(\nabla\times\bold{B})=\varepsilon_0\mu_0\frac{\partial}{\partial t}(\nabla\times\bold{E})\\\\ &\nabla(\nabla\cdot\bold{B})-\nabla^2\bold{B}=-\varepsilon_0\mu_0\frac{\partial^2\bold{B}}{\partial t^2}\\\\ &\nabla^2\bold{B}=\varepsilon_0\mu_0\frac{\partial^2\bold{B}}{\partial t^2} \end{aligned}

所以,光速c=1ε0μ0c=\frac{1}{\sqrt{\varepsilon_0\mu_0}}.

数学知识

微分方程

比较简单的,可以直接分离变量积分.

一些常用的积分方法:

1.换元积分法:

例1

dβ(1β)21β2=?\int\frac{d\beta}{(1-\beta)^2\sqrt{1-\beta^2}}=?

必须背下来反三角函数的积分. 先处理分母的前半部分,

11β2d(11β)\int\frac{1}{\sqrt{1-\beta^2}}d(\frac{1}{1-\beta})

换元,x=1/(1β)x=1/(1-\beta)β=11/x\beta=1-1/x

11(11x)2dx=x2x1dx=12(2x1)+12x1dx=122x1dx+1212x1dx=16(2x1)3/2+12(2x1)1/2+C\begin{aligned} &\int\frac{1}{\sqrt{1-(1-\frac{1}{x})^2}}dx=\int\frac{x}{\sqrt{2x-1}}dx\\\\ &=\frac{1}{2}\int\frac{(2x-1)+1}{\sqrt{2x-1}}dx\\\\ &=\frac{1}{2}\int\sqrt{2x-1}dx+\frac{1}{2}\int\frac{1}{\sqrt{2x-1}}dx\\\\ &=\frac{1}{6}(2x-1)^{3/2}+\frac{1}{2}(2x-1)^{1/2}+C \end{aligned}

例2

dθλ+cos2θ=?\int\frac{d\theta}{\lambda+\cos^2\theta}=?

三角函数变形:

cos2θ=11+tan2θ1+tan2θ=(tanθ)\begin{aligned} &\cos^2\theta=\frac{1}{1+\tan^2\theta}\\\\ &1+\tan^2\theta=(\tan\theta)' \end{aligned}

所以原积分化为

d(tanθ)λtan2θ+(λ+1)\int\frac{d(\tan\theta)}{\lambda\tan^2\theta+(\lambda+1)}

换元x=tanθx=\tan\theta

dxλx2+(λ+1)=1λ+1dx1+λx2λ+1=1λ(λ+1)d(λλ+1x)1+(λλ+1x)2=1λ(λ+1)arctan(λλ+1x)+C=1λ(λ+1)arctan(λλ+1tanθ)+C\begin{aligned} &\int\frac{dx}{\lambda x^2+(\lambda+1)}\\\\ &=\frac{1}{\lambda+1}\int\frac{dx}{1+\frac{\lambda x^2}{\lambda+1}}\\\\ &=\frac{1}{\sqrt{\lambda(\lambda+1)}}\int\frac{d(\sqrt{\frac{\lambda}{\lambda+1}}x)}{1+(\sqrt{\frac{\lambda}{\lambda+1}}x)^2}\\\\ &=\frac{1}{\sqrt{\lambda(\lambda+1)}}\arctan(\sqrt{\frac{\lambda}{\lambda+1}}x)+C\\\\ &=\frac{1}{\sqrt{\lambda(\lambda+1)}}\arctan(\sqrt{\frac{\lambda}{\lambda+1}}\tan\theta)+C \end{aligned}

2.分部积分法:

原理 d(uv)=udv+vduudv=d(uv)vdud(uv)=udv+vdu\Rightarrow udv=d(uv)-vdu

例3

0lnx(1+x)2dx=?\int_0^\infty\frac{\ln x}{(1+x)^2}dx=?

直接分部,

0lnxd(11+x)=lnx1+x0+01x+1d(lnx)=lnx1+x+1x(x+1)dx=lnx1+x+1xdx11+xdx=lnx1+x+lnxln(1+x)=0\begin{aligned} &\int_0^\infty\ln x\,d(-\frac{1}{1+x})\\\\ &=-\frac{\ln x}{1+x}|^\infty_0+\int_0^\infty\frac{1}{x+1}d(\ln x)\\\\ &=-\frac{\ln x}{1+x}+\int\frac{1}{x(x+1)}dx\\\\ &=-\frac{\ln x}{1+x}+\int\frac{1}{x}dx-\int\frac{1}{1+x}dx\\\\ &=-\frac{\ln x}{1+x}+\ln x-\ln(1+x)=0 \end{aligned}

齐次方程,满足

dydx=φ(yx)\frac{dy}{dx}=\varphi(\frac{y}{x})

解法:引入新的函数u=y/xu=y/x,就可以化为可分离变量的方程.

一阶线性微分方程:

dydx+P(x)y=Q(x)\frac{dy}{dx}+P(x)y=Q(x)

通解公式

y=eP(x)dx[C+eP(x)dxQ(x)dx]y=e^{-\int P(x)dx}[C+\int e^{\int P(x)dx}Q(x)dx]

悬链线问题:

d2ydx2=1a1+(dydx)2\frac{d^2y}{dx^2}=\frac{1}{a}\sqrt{1+(\frac{dy}{dx})^2}

p=dy/dxp=dy/dx,就化为可以分离变量的方程.

Euler方程:

xny(n)+p1xn1y(n1)++pn1xy+pny=f(x)x^ny^{(n)}+p_1x^{n-1}y^{(n-1)}+\cdots+p_{n-1}xy'+p_ny=f(x)

求导算符DDdydx=Dy\frac{dy}{dx}=Dy

做换元x=etx=e^t,现在的求导算符D=ddtD=\frac{d}{dt},所以yy的任一一阶导数可以被记作:

dydx=dydtdtdx=1xdydt=1xDyd2ydx2=ddt(dydx)dtdx=ddt(etdydt)1x=1x(etdydt+etd2ydt2)=1x2(D1)Dydnydxn=1xnD(D1)(D2)(Dn+1)y\begin{aligned} &\frac{dy}{dx}=\frac{dy}{dt}\frac{dt}{dx}=\frac{1}{x}\frac{dy}{dt}=\frac{1}{x}Dy\\\\ &\frac{d^2y}{dx^2}=\frac{d}{dt}(\frac{dy}{dx})\frac{dt}{dx}=\frac{d}{dt}(e^{-t}\frac{dy}{dt})\frac{1}{x}=\frac{1}{x}(-e^{-t}\frac{dy}{dt}+e^{-t}\frac{d^2y}{dt^2})\\\\ &=\frac{1}{x^2}(D-1)Dy\\\\ &\Longrightarrow\frac{d^ny}{dx^n}=\frac{1}{x^n}D(D-1)(D-2)\cdots(D-n+1)y \end{aligned}

偏导数

(UV)T=(UV)S+(US)V(SV)T=p+T(SV)T=p+T(pT)V\begin{aligned} &(\frac{\partial U}{\partial V})_T=(\frac{\partial U}{\partial V})_S+(\frac{\partial U}{\partial S})_V(\frac{\partial S}{\partial V})_T\\\\ &=-p+T(\frac{\partial S}{\partial V})_T\\\\ &=-p+T(\frac{\partial p}{\partial T})_V \end{aligned}

A(x,y)A(x,y),固定yy不变,对xx求导数,即为偏导数,记作(Ax)y(\frac{\partial A}{\partial x})_y.

现在定义A(x,y)A(x,y)B(x,y)B(x,y)C(x,y)C(x,y),来学习一些偏导数的公式.

dA(x,y)=(Ax)ydx+(Ay)xdydA(x,y)=(\frac{\partial A}{\partial x})_ydx+(\frac{\partial A}{\partial y})_xdy

(Ax)y(xy)A(yA)x=1(Ax)B=(Ax)y+(Ay)x(yx)B\begin{aligned} &(\frac{\partial A}{\partial x})_y(\frac{\partial x}{\partial y})_A(\frac{\partial y}{\partial A})_x=-1\\\\ &(\frac{\partial A}{\partial x})_B=(\frac{\partial A}{\partial x})_y+(\frac{\partial A}{\partial y})_x(\frac{\partial y}{\partial x})_B \end{aligned}


课堂讲义
https://physnya.top/2024/06/28/课堂讲义/
作者
菲兹克斯喵
发布于
2024年6月28日
更新于
2024年7月9日
许可协议